Unsupervised Classification of Fully Polarimetric SAR Image Based on Polarimetric Features and Spatial Features
نویسندگان
چکیده
Polarimetric SAR (PolSAR) has played more and more important roles in earth observation. Polarimetric SAR image classification is one of the key problems in the PolSAR image interpretation. In this paper, based on the scattering properties of fully polarimetric SAR data, combing the statistical characteristics and neighborhood information, an efficient unsupervised method of fully polarimetric SAR image classification is proposed. In the method, polarimetric scattering characteristics of fully polarimetric SAR image is used, and in the denoised total power image of polarimetric SAR, SPAN (the total polarimetric power), the texture features of gray level co–occurrence matrix are extracted at the same time. Finally, the polarimetric information and texture information are combined for fully polarimetric SAR Image classification with clustering algorithm. The experimental results show that better classification results can be obtained in the Radarsat-2 data with the proposed method.
منابع مشابه
Classification of polarimetric radar images based on SVM and BGSA
Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملInvestigating the Performance of Sar Polarimetric Features in Land-cover Classification
This paper represents a study on land-cover classification using different polarimetric SAR features. The experiment is carried out using Cand L-band fully polarimetric EMISAR data acquired on July 5 and 6, 1995 over an agricultural area in Fjärdhundra, near Uppsala, Sweden. The polarimetric features investigated are coherency matrix, intensity of both Cand L-band SAR, and Cloud decomposition p...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کامل